Modulation of Cell Cycle Progression by 5-Azacytidine Is Associated with Early Myogenesis Induction in Murine Myoblasts

نویسندگان

  • Anna Montesano
  • Livio Luzi
  • Pamela Senesi
  • Ileana Terruzzi
چکیده

Myogenesis is a multistep process, in which myoblasts withdraw from the cell cycle, cease to divide, elongate and fuse to form multinucleated myotubes. Cell cycle transition is controlled by a family of cyclin-dependent protein kinases (CDKs) regulated by association with cyclins, negative regulatory subunits and phosphorylation. Muscle differentiation is orchestrated by myogenic regulatory factors (MRFs), such as MyoD and Myf-5. DNA methylation is crucial in transcriptional control of genes involved in myogenesis. Previous work has indicated that treatment of fibroblasts with the DNA-demethylating agent 5-azacytidine (AZA) promotes MyoD expression. We studied the effects of AZA on cell cycle regulation and MRFs synthesis during myoblast proliferation and early myogenesis phases in C2C12 cells. During the proliferation phase, cells were incubated in growth medium with 5µM AZA (GMAZA) or without AZA (GM) for 24 hours. At 70% confluence, cells were kept in growth medium in order to spontaneously achieve differentiation or transferred to differentiation medium with 5μM AZA (DMAZA) or without AZA (DM) for 12 and 24 hours. Cells used as control were unstimulated. In the proliferation phase, AZA-treated cells seemed to lose their characteristic circular shape and become elongated. The presence of AZA resulted in significant increases in the protein contents of Cyclin-D (FC:1.23 GMAZA vs GM p≤0.05), p21 (FC: 1.23 GMAZA vs GM p≤0.05), Myf-5 (FC: 1.21 GMAZA vs GM p≤0.05) and MyoD (FC: 1.20 GMAZA vs GM p≤0.05). These results propose that AZA could inhibit cell proliferation. During 12 hours of differentiation, AZA decreased the downregulation of genes involved in cell cycle arrest and in restriction point (G1 and G1/S phase) and the expression of several cyclins, E2F Transcription Factors, cyclin-dependent kinase inhibitors, specific genes responsible of cell cycle negative regulation. During 24 hours of differentiation, AZA induced an increment in the protein expression of Myf-5 (FC: 1.57 GMAZA vs GM p≤0.05), MyoD (FC: 1.14 DM vs GM p≤0.05; FC: 1.47 DMAZA vs GM p≤0.05), p21 (FC: 1.36 GMAZA vs GM p≤0.01; FC: 1.49 DM vs GM p≤0.05; FC: 1.82 DMAZA vs GM p≤0.01) and MyHC (FC: 1.40 GMAZA vs GM p≤0.01; FC: 2.39 DM vs GM p≤0.05; FC: 3.51 DMAZA vs GM p≤0.01). Our results suggest that AZA-induced DNA demethylation can modulate cell cycle progression and enhance myogenesis. The effects of AZA may open novel clinical uses in the field of muscle injury research and treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYTOKINE AND GROWTH FACTOR MODULATION OF CELL CYCLE EVENTS IN HUMAN MELANOMA CELL LINES

Cytokines influence cell cycle events, which in some but not all instances can be associated with melanoma progression. Analysis of the G0/G 1 and S phase fractions of the cell cycle was used to assay the proliferative or inhibitory activity of cytokines against ten human melanoma cell lines, including pairs of cell lines derived from primary and metastatic tissue of individual patients. Cy...

متن کامل

Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis

During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogen...

متن کامل

The activity of differentiation factors induces apoptosis in polyomavirus large T-expressing myoblasts.

It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene produ...

متن کامل

Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells.

We have examined the expression, activity and localization of cyclin dependent kinase 5 (cdk5), during myogenesis. Cdk5 protein was found expressed in adult mouse muscle. In murine C2 cells, both the protein level and kinase activity of cdk5 showed a marked increase during early myogenesis with a peak between 36 and 48 hours of differentiation, decreasing as myotubes fuse after 60 to 72 hours. ...

متن کامل

The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect

BACKGROUND Myogenesis is susceptible to the availability of nutrients and humoral factors and suboptimal fetal environments affect the number of myofibers and muscle mass. AIM We examined the mechanisms regulating cell cycle progression and arrest in skeletal myoblasts. MATERIALS AND METHODS Mouse C2C12 myoblasts were subjected to proliferation or induction of differentiation in the presenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013